Chain Rule: It is also called

- Composite Function Rule or

- Function of a Function Rule

Theorem:

Let $y = f(u)$ be a function of u and in turn let $u = g(x)$ be a function of x so that $y = f(g(x)) = (f \circ g)(x)$. Then $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$.

Proof:

In the above function $u = g(x)$ is known as the inner function and f is known as the outer function. Note that, ultimately, y is a function of x .

Now
$$
\Delta u = g(x + \Delta x) - g(x)
$$

Therefore, $\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \times \frac{\Delta u}{\Delta x} = \frac{f(u + \Delta u) - f(u)}{\Delta u} \times \frac{g(x + \Delta x) - g(x)}{\Delta x}$.

Note that $\Delta u \rightarrow 0$ as $\Delta x \rightarrow 0$

Therefore,
$$
\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta u} \times \frac{\Delta y}{\Delta x} \right)
$$

\n
$$
= \lim_{\Delta u \to 0} \left(\frac{\Delta y}{\Delta u} \right) \cdot \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} \right)
$$

\n
$$
= \lim_{\Delta u \to 0} \frac{f(u + \Delta u) - f(u)}{\Delta u} \times \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}
$$

\n
$$
= f'(u) \times u'(x)
$$

\n
$$
= f'\left(g(x)\right)g'(x) \text{ or } \boxed{\frac{d}{dx}(f(g(x)) = f'(g(x))g'(x)}.
$$

Remark:

Thus, to differentiate a function of a function $y = f(g(x))$, we have to take the derivative of the outer function f regarding the argument $g(x) = u$, and multiply the derivative of the inner function $g(x)$ with respect to the independent variable x . The variable u is known as **intermediate argument**.

Example-1:- Find the derivative of tan $(2x + 3)$. **Solution** Let $f(x) = \tan (2x + 3)$, $u(x) = 2x + 3$ and $v(t) = \tan t$. Then $(v \circ u)(x) = v(u(x)) = v(2x + 3) = \tan (2x + 3) = f(x)$

Thus *f* is a composite of two functions. Put $t = u(x) = 2x + 3$. Then $\frac{dv}{dt} = \sec^2 t$ and

 $\frac{dt}{dx}$ = 2 exist. Hence, by chain rule

$$
\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = 2\sec^2(2x+3)
$$

Example-2: Find the derivative of $tan(2x + 3)$.

Sol: Let $f(x) = \tan (2x + 3)$, $u(x) = 2x + 3$ and $v(t) = \tan t$. Then

$$
(v \text{ o } u) (x) = v(u(x)) = v(2x + 3) = \tan (2x + 3) = f(x)
$$

Thus *f* is a composite of two functions. Put $t = u(x) = 2x + 3$. Then $\frac{dv}{dt} = \sec^2 t$ and

 $\frac{dt}{dx}$ = 2 exist. Hence, by chain rule

$$
\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = 2\sec^2(2x+3)
$$

Derivaitve of Inverse Function:

Inverse Function Theorem

Let $f(x)$ be a function that is both invertible and differentiable. Let $y = f^{-1}(x)$ be the inverse of $f(x)$. For all x satisfying $f'(f^{-1}(x)) \neq 0$,

$$
\frac{dy}{dx} = \frac{d}{dx}(f^{-1}(x)) = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.
$$

Alternatively, if $y = g(x)$ is the inverse of $f(x)$, then

$$
g'(x) = \frac{1}{f'(g(x))}.
$$

Important Formulas:

Derivatives of Inverse Trigonometric Functions

$$
\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}
$$

$$
\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1 - x^2}}
$$

$$
\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1 + x^2}
$$

$$
\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1 + x^2}
$$

$$
\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2 - 1}}
$$

$$
\frac{d}{dx}(\csc^{-1} x) = \frac{-1}{|x|\sqrt{x^2 - 1}}
$$

Example 26 Find the derivative of f given by $f(x) = \sin^{-1} x$ assuming it exists. **Solution** Let $y = \sin^{-1} x$. Then, $x = \sin y$.

Differentiating both sides w.r.t. x , we get

$$
1 = \cos y \frac{dy}{dx}
$$

which implies that

$$
\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\cos (\sin^{-1} x)}
$$

Observe that this is defined only for cos $y \ne 0$, i.e., $\sin^{-1} x \ne -\frac{\pi}{2}, \frac{\pi}{2}$, i.e., $x \ne -1, 1$,

i.e., $x \in (-1, 1)$.

To make this result a bit more attractive, we carry out the following manipulation. Recall that for $x \in (-1, 1)$, sin $(\sin^{-1} x) = x$ and hence

$$
\cos^2 y = 1 - (\sin y)^2 = 1 - (\sin (\sin^{-1} x))^2 = 1 - x^2
$$

Also, since $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, cos y is positive and hence cos $y = \sqrt{1-x^2}$ Thus, for $x \in (-1, 1)$,

$$
\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}
$$

Example 27 Find the derivative of f given by $f(x) = \tan^{-1} x$ assuming it exists.

Solution Let $y = \tan^{-1} x$. Then, $x = \tan y$.

Differentiating both sides w.r.t. x , we get

$$
1 = \sec^2 y \frac{dy}{dx}
$$

which implies that

$$
\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + (\tan(\tan^{-1} x))^2} = \frac{1}{1 + x^2}
$$